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The purpose of this paper is to study the two dimensional deformation in a thermoelastic micropolar solid 
with cubic symmetry. A mechanical force is applied along the interface of a thermoelastic micropolar solid with 
cubic symmetry (Medium I) and a thermoelastic solid with microtemperatures (Medium II). The normal mode 
analysis has been applied to obtain the exact expressions for components of normal displacement, temperature 
distribution, normal force stress and tangential coupled stress for a thermoelastic micropolar solid with cubic 
symmetry. The effects of anisotropy, micropolarity and thermoelasticity on the above components have been 
depicted graphically. 
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1. Introduction 
 
 A micropolar continum is a collection of inter-connected particles in the form of small rigid bodies. 
The deformation in such materials is characterized by both translational and rotational motion. In this 
motion, the force at a point of the surface element of the body is completely determined by the stress vector 
at that point. Micropolar solids may represent the materials that are made up of dipole atoms and are 
subjected to surface and body couples. Polymeric materials, rocks, wood and fibre glass are few examples of 
such materials. Eringen and Suhubi [1] and Suhubi and Eringen [2] developed a non linear theory of micro-
elastic solids. Later Eringen [3-5] developed a theory for the special class of micro-elastic materials and 
called it the "linear theory of micropolar elasticity". Under this theory, solids can undergo macro-
deformations and micro-rotations. Materials affected by micromotions and microdeformations are known as 
micromorphic materials. Thermoelasticity is the study of equilibrium of bodies, treated as thermodynamic 
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systems, whose interactions with the surroundings are restricted to the mechanical work, heat exchange and 
external forces. The change of body temperature is caused not only by the external and internal heat sources 
but also by the process of deformation itself. The micropolar theory was extended to include thermal effects 
by Nowacki [6], Eringen [7], Tauchert et al. [8], Tauchert [9], Nowacki and Olszak [10]. One can refer to 
Dhaliwal and Singh [11-12] for a review on the micropolar thermoelasticity, as well as to Eringen and 
Kafadar [13] in "Continuum Physics" series in which the general theory of micromorphic media has been 
summed up.  
          In the cubic symmetry, the materials have nine planes of symmetry whose normals are on the three 
coordinate axes and on the coordinate planes making an angle / 4  with the coordinate axes. With the 
chosen coordinate system along the crystalline directions, the mechanical behavior of a cubic crystal can be 
characterized by four independent elastic constants 1A , 2A , 3A  and 4A . A wide class of crystals such as Si, 
Cu, Ni, Fe, Au, Al etc., which are some frequently used substances, belong to cubic materials. Minagawa and 
Arakawa [14] discussed dispersion curves for waves in a cubic micropolar medium with reference to 
estimations of the material constants for diamond. Kumar and Ailawalia [15-18] and Ailawalia and Kumar 
[19] studied some source problems in a micropolar thermoelastic medium possessing cubic symmetry. 
Othman et al. [20] presented the effect of inclined load in a micropolar thermoelastic medium possessing 
cubic symmetry under three theories. Kumar and Partap [21] discussed the elastodynamic behavior of 
axisymmetric vibrations in a homogeneous isotropic micropolar thermoelastic cubic crystal plate. Lotfy and 
Yania [22] investigated the effect of the magnetic field and mode I crack in a micropolar thermoelastic cubic 
medium. Abbas et al. [23] studied the thermoelastic interaction in a thermally conducting cubic crystal 
subjected to ramp-type heating. 
      Grot [24] discussed a theory of thermodynamics of elastic bodies with microstructure whose 
microelements possess microtemperatures. Riha [25] studied heat conduction in materials with 
microtemperatures. Iesan and Quintanilla [26] studied a theory of thermoelasticity with microtemperatures. 
Iesan [27] proposed the theory of micromorphic elastic solids with microtemperatures. Exponential stability 
in thermoelasticity with microtemperatures was studied by Casas and Quintanilla [28]. Scalia and Svandze 
[29] gave the solutions of thermoelasticity with microtemperatures. Iesan [30] discussed thermoelasticity of 
bodies with microstructure and microtemperatures. Aouadi [31] discussed some theorems in the isotropic 
theory of microstretch thermoelasticity with microtemperatures. Quintanilla [32] discussed thermoelastic 
bodies with inner structure and microtemperatures. Scalia et al. [33] studied basic theorems in the 
equilibrium theory of thermoelasticity with microtemperatures. Quintanilla [34] discussed the growth and 
continuos dependence in thermoelasticity with microtemperatures. Steeb et al. [35] studied time harmonic 
waves in a thermoelastic material with microtemperatures. Chirita et al. [36] studied the theory of 
thermoelasticity with microtemperatures. Kumar and Kaur [37] studied the reflection and refraction of plane 
waves at the interface of an elastic solid and microstretch thermoelastic solid with microtemperatures. 
Ciarletta et al. [38] studied a homogeneous strongly elliptic thermoelastic medium with microstructures. 
      The present investigation is to determine the components of normal displacement, temperature 
distribution, normal force stress and tangential coupled stress in a thermoelastic micropolar solid with cubic 
symmetry due to mechanical source. The solution is obtained using normal mode analysis and effects of 
anisotropy, micropolarity and thermoelasticity on the above components are depicted graphically.    
 
2. Formulation of the problem   
 
 We consider a normal force of magnitude P1 acting along the interface of a micropolar thermoelastic 
cubic crystal (medium I) occupying the region y 0    and a thermoelastic medium with 

microtemperatures (medium II) in the region 0 y    as shown in Fig.1.  

 We restrict our analysis to the plane strain parallel to the xy  plane with a displacement vector for 

micropolar thermoelastic solid with cubic symmetry (medium I) as  I I I
1 2= u ,u ,0u , microrotation vector as 



Response of thermoelastic micropolar cubic crystal … 7 

 , , 3= 0 0   and displacement vector for a thermoelastic solid with microtemperatures (medium II) as 

 , ,II II II
1 2= u u 0u  and micro-temperature vector as  , ,II II II

1 2= w w 0w . 

 

  
Fig.1. Geometry of the problem. 

 
 The field equations and constitutive relations in the absence of body forces, body couples and heat 
sources for medium I and medium II are given by: 
 
For medium I, i.e., a micropolar thermoelastic medium with cubic symmetry, given by Kumar and Ailawalia 
[15] as 
 

      ,
2 I 2 I 2 I 2 I

31 2 1 1 1
1 2 4 3 3 4 1 12 2 2

u u u T u
A A A A A A

x y y xx y t

    
        

     
 (2.1) 

 

   ( ) ( ) ,
2 I 2 I 2 I 2 I

32 1 2 1 2
3 2 4 1 3 4 1 12 2 2

u u u T u
A A A A A A

x y x yx y t

    
        

     
 (2.2) 

 

             
    ,

2I I
2 32 1

3 3 3 4 3 4 3 1 2

u u
B A A 2 A A = j

x y t

    
             

 (2.3) 

 

  * * ,
I I

2 1 1 2
1 1 1 1 1 0

T u u
K T = c T

t t x y

   
          

 (2.4) 

 

                

,
I I

I 1 2
yy 2 1 1 1

u u
= A A T

x y

 
   

 
 (2.5) 

 

    P1  Thermoelastic medium with                               

              Microtemperature (medium- II) 

                                               x    

               Thermoelastic Micropolar cubic crystal (medium-I) 

   Y 
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,
I I

I 2 1
yx 4 3 3 3

u u
= A A

x y

    
               

 (2.6) 

 

     
.3

yz 3m = B
y




                                            (2.7) 

 
For medium II, i.e., thermoelastic medium with microtemperatures, the equations are given by Steeb et al. 
[35] as 
 

  ( ) ( ) ,
2 II 2 II 2 II 2 II

1 2 1 2 1
2 2 2 2 2 2 22 2 2

u u u T u
2

x y xx y t

    
            

    
 (2.8) 

 

  ( ) ( ) ,
2 II 2 II 2 II 2 II

2 1 2 2 2
2 2 2 2 2 2 22 2 2

u u u T u
2

x y yy x t

    
            

    
 (2.9)

     
 

  * ,
II II II II

2 2 1 2 1 2
2 2 1 0 2 0 1

T u u w w
K T a T T k 0

t x y x y

       
                    

 (2.10) 

 

  ( ) ( ) ,
2 II 2 II 2 II II

II1 2 1 1 2
4 5 6 4 5 6 2 1 32 2

w w w w T
k k k k k k b k w k 0

x y t xx y

    
        

    
 (2.11) 

 

  ( ) ( ) ,
2 II 2 II 2 II II

II2 1 2 2 2
6 4 5 4 5 6 2 2 32 2

w w w w T
k k k k k k b k w k 0

x y t yx y

    
        

    
 (2.12) 

 

                

( ) ,
II II

II 1 2
yy 2 2 2 2 2

u u
= 2 T

x y

 
       

 
 (2.13) 

 

                

,
II II

II 1 2
yx 2

u u
=

y x

  
      

 (2.14) 

 

                

( ) ,
II II

II 1 2
yy 4 4 5 6

w w
q = k k k k

x y

 
   

 
 (2.15) 

 

                

.
II II

II 2 1
yx 5 6

w w
q = k k

x y

 
 

 
 (2.16) 

 
 For convenience the following non-dimensional variables are used 
 

  ' 1
x = x

L
,    ' 1

y = y
L

,    
'I I

i i
1

u = u
L

,    
'

,II II
i i

1
u = u

L
    

'II II
i iw = Lw ,    ' 1c

t = t
L

,  
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'

I
ijI

ij
2 0

=
T





,    

'
II
ijII

ij
2 0

=
T





,    '

3 3=  ,    ij'
ij

2 0

m
m =

L T
,    

'
II
ijII

ij
1 2 0

q
q =

Lc T
,    ' i

i
0

T
T =

T
 

 
where L  is the standard length and 1c  is the longitudinal wave velocity in medium II given by 

.2 2 2
1

2

2
c =

  
  

 Using the above non dimensional variables in Eqs (2.1)-(2.7), it may reduce these equations to (after 
dropping superscripts) 
 

             
,

2 I 2 I 2 I 2 I
31 2 1 1 1

1 2 3 4 52 2 2

u u u T u
d d d d d

x y y xx y t

    
    

     
 (2.17) 

 

   ,
2 I 2 I 2 I 2 I

32 1 2 1 2
3 2 1 4 52 2 2

u u u T u
d d d d d

x y x yx y t

    
    

     
 (2.18) 

 

             
,

2 2 2I I
3 3 32 1

6 7 3 82 2 2

u u
d d = d

x yx y t

         
               

 (2.19) 

 

  ,
2 2 I I

1 1 1 1 2
9 102 2

T T T u u
d d 0

t t x yx y

       
                 

 (2.20) 

 

                

,
I I

I 1 2
yy 11 12 13 1

u u
= d d d T

x y

 
  

 
 (2.21) 

 

                

,
I I

I 2 1
yx 14 15 16 3

u u
= d d d

x y

 
   

 
 (2.22) 

 

    

3
yz 17m = d

y




                                      (2.23) 

 
where 
 

  ,1
1 2

1 1

A
d =

c
     ,2 4

2 2
1 1

A A
d =

c




     ,3

3 2
1 1

A
d =

c
     ,3 4

4 2
1 1

A A
d =

c




     ,1 0

5 2
1 1

T
d =

c




 

 

  
( )

,3 4
6

3

A A L
d =

B


     

( )
,

2
3 4

7
3

2 A A L
d =

B


     ,

2
1 1

8
3

jc
d =

B


     

*

*
,1 1 1

9
1

c Lc
d =

K


 

 

  
*

,1 1
10

1

Lc
d =

K


     ,2

11
2 0

A
d =

T
     ,1

12
2 0

A
d =

T
     ,1

13
2

d =



     ,4
14

2 0

A
d =

T
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  ,3
15

2 0

A
d =

T
     

( )
,3 4

16
2 0

A A
d =

T




     .3
17 2

2 0

B
d =

L T
 

 
3. Analytic solution 
 
 The solution of the physical variable under consideration can be decomposed in terms of normal 
modes and can be considered in the following form  
 

       , , , , , , , , , , , , , , , ,I I II II II II I I II II II II t iax
i i 3 ij ij i i ij ij i i 3 ij ij i i ij iju T m u w q x,y,t u T m u w q y e          

 

where   is the complex frequency, a  is the wave number in the y -direction and ( ), ( ), ( ),I
i i 3u y T y y  

( ), ( ),I
ij ijy m y ( ), ( ), ( ), ( )II II II II

i i ij iju y w y y q y  are the amplitudes of field quantities.  

 Using normal modes in Eqs (2.17)-(2.20), we get  
 

        
  ,2 I I

3 42 1 43 2 4 3 44 1d D h u h Du d D h T = 0    
 

(3.1) 

 

        
  ,I 2 I

43 1 1 45 2 46 3 5 1h Du d D h u h d DT = 0      (3.2) 

 

       
  ,I I 2

6 1 47 2 48 3d Du h u D h = 0      (3.3) 

 

       
 I I 2

49 1 50 2 51 1h u h Du D h T = 0     (3.4) 

 

where 

 

  ,2 2
42 1h = a d       ,43 2h = iad

    
,44 5h = iad
    

,2 2
45 3h = a d  

   
,46 4h = iad  

  

  
,47 6h = iad
   

,2 2
48 7 8h = a d d     

 
,49 10h = ia d
   

,50 10h = d    .2
51 9h = a d   

 
and constitutive relations (2.21)-(2.22) become 
 

               

,I I
yy 11 1 12 2 13iad u d Du d T     (3.5) 

 

              

,I I
yx 14 2 15 1 16 3iad u d Du d      (3.6) 

 

  

.yz 17 3m d D   (3.7) 

 

       
Eliminating ( )I

2u y , ( )3 y , ( )1T y  between Eqs (3.1)-(3.2), we get the following eight order 

differential equation for ( )I
1u y  as 
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   8 6 4 2 I

1D PD QD RD S u y = 0     (3.8) 

 
where 
 

      2
1 3 48 51 3 45 1 42 5 3 50 43 1 4 6

1 3

1
P = d d h h d h d h d d h h d d d

d d
        , 

 

  





( )( )

( ) ( )

( ) ,

1 3 48 51 3 45 1 42 48 51 42 45 46 47 3
1 3

2
5 50 3 48 42 43 48 51 43 46 6 43 49 5 43 47 4

4 6 1 51 6 45 4 5 6 50 43 44 50 44 49 1

1
Q = d d h h d h d h h h h h h h d

d d

d h d h h h h h h h d h h d h h d

d d d h d h d d d h h h h h h d

     

       

    

     

 

  





( ) ( ) ( )

( ) ,

48 51 3 45 1 42 42 45 48 51 46 47 3 51 42 5 42 50 48
1 3

2
43 48 51 43 51 46 6 43 49 48 5 43 47 51 4 45 51 4 6

47 49 4 5 43 44 48 50 44 49 1 48 45 44 46 50 6

1
R = h h d h d h h h h h h h d h h d h h h

d d

h h h h h h d h h h d h h h d h h d d

h h d d h h h h h h d h h h h h d

      

     

    
           

    

               42 51 45 48 46 47 44 45 48 49 44 46 47 49
1 3

1
S = h h h h h h h h h h h h h h

d d
     .  

 

 In a similar manner we can show that ( )I
2u y , ( )3 y , ( )1T y  satisfies the equation 

 

           
  ( ) , ( ) , ( ) ,8 6 4 2 I

2 3 1D PD QD RD S u y y T y = 0      (3.9)  

 
which can be factorized as follows  
 

            
     ( )2 2 2 2 2 2 2 2 I

1 2 3 4 1D l D l D l D l u y = 0     (3.10) 

 

where 2
nl ; ( , , , )n 1 2 3 4 are roots of Eq.(3.10). 

 The series solution of Eq.(3.10) has the form  
 

   ( ) ,
4

l yI n
1 n

n=1

u y = L a, e    (3.11) 

 

   '( ) ,
4

l yI n
2 n

n=1

u y = L a, e    (3.12) 

 

     '' ,
4

l yn
1 n

n=1

T y = L a, e    (3.13) 
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   '''( )
4

l yn
3 n

n=1

y = L a, e     (3.14) 

 

where      , , , , ,' '
n n nL a L a L a    and  ''' ,nL a   are specific functions depending upon a ,  . 

 Using Eqs (3.11)-(3.14) in Eqs (3.1)-(3.4), we get the following relations  
 

     , , ,'
n 1n nL a = R L a   (3.15) 

 

      , , ,'
n 2n nL a = R L a    (3.16) 

 

      , , .'
n 3n nL a = R L a    (3.17) 

 
Thus we have 
 

   ( ) , ,
4

l yI n
2 1n n

n=1

u y = R L a e    (3.18) 

 

      , ,
4

l yn
1 2n n

n=1

T y = R L a e    (3.19) 

 

   ( ) ,
4

l yn
3 3n n

n=1

y = R L a e    , (3.20) 

 

     , ,
4

l yn
yy 4n n

n=1

y = R L a e     (3.21) 

 

     , ,
4

l yn
yx 5n n

n=1

y = R L a e     (3.22)  

 

     ,
4

l yn
yz 6n n

n=1

m y = R L a e    (3.23) 

 
where 
 

 
    

      

5 3
3 5 n 5 42 43 44 48 3 5 4 5 6 n 48 5 42 43 44 6 44 46 n

1n 4 2
5 43 1 44 n 44 45 48 5 43 1 44 47 4 5 n 44 45 48 46 47

d d l d h h h h d d d d d l h d h h h d h h l
R =

d h d h l h h h d h d h h d d l h h h h h

         
        

,
 

  

 
[ ]

[ ]
49 50 n 1n

2n 2
n 51

h h l R
R =

l h




, 
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[ ]

[ ]
6 n 47 1n

3n 2
n 48

d l h R
R =

l h





, 

 
  [ ]4n 11 n 12 1n 13 2nR = iad l d R d R  , 
 
  [ ]5n 14 1n n 15 16 3nR = iad R l d d R  , 
 
  [ ]6n n 17 3nR = l d R . 
 
 Adopting the same methodology, the solutions for medium II (i.e., a thermoelastic solid with 
microtemperatures), are of the form  
 

     , ,
5

r yII m
1 m

m=1

u y = M a e    (3.24) 

 

     ' , ,
5

r yII m
2 m

m=1

u y = M a e    (3.25) 

 

  
   '' , ,

5
r ym

2 m
m=1

T y = M a e    (3.26) 

 

  
   '' , ,

5
r yII m

1 m
m=1

w y = M a e    (3.27) 

 

  
   ''' ,

5
r yII m

2 m
m=1

w y = M a e    (3.28) 

 

where 2
mr ; ( , , , , )m 1 2 3 4 5  are the roots of the characteristic equation, 

  

    ( )10 8 6 4 2 II
1D AD BD CD ED F u y = 0      (3.29) 

 
and  
 

  
 
 ,

2
13 13 20 35 18 34 40 18 20 33 17 202

13 18 20

2
18 20 32 14 16 20 18 18 20 13 31 20 18 36

1
A= h h h h h h h h h h h h

h h h

h h h h h h h h h h h h h h
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2
13 13 34 35 20 33 35 18 33 34 33 40 17 40 412

13 18 20

2
17 34 18 39 41 39 40 32 20 35 18 34 40 18 33 20 17 20

2 2
13 14 16 20 35 18 34 40 31 13 20 35 18 34 40 18 33 20 17 2

1
B = h h h h h h h h h h h h h h h

h h h

h h h h h h h h h h h h h h h h h h

h h h h h h h h h h h h h h h h h h h h

     

        

        
 

  ,

0

18 20 32 20 14 18 16 14 18 20 36 38

2 2
36 18 34 35 20 40 18 33 20 17 20 18 20 13 37 38

h h h h h h h h h h h h

h h h h h h h h h h h h h h h h



   

      

     

                

  

  

 




13 13 35 39 41 33 34 32 35 34 20 33 35 18 33 342
13 18 20

2
33 40 17 40 41 17 34 18 39 41 39 40 14 16 34 35

2
31 13 34 35 20 33 35 18 33 34 33 40 17 40 41 17 34

18 39 41 39 40

1
C = h h h h h h h h h h h h h h h h

h h h

h h h h h h h h h h h h h h h h

h h h h h h h h h h h h h h h h h

h h h h h

     

      

      

   
   

     

2
32 20 35 18 34 40 18 33 20 17 20

2 2 2
31 14 16 20 35 18 34 40 36 35 34 20 33 35 18 33 34 33 40

2
39 40 18 17 40 41 34 14 36 38 20 35 18 34 40

18 20 32 37 38 13 37 38 20 35 18

h h h h h h h h h h h

h h h h h h h h h h h h h h h h h h h

h h h 1 h h h h h h h h h h h h

h h h h h h h h h h h h

     

       

       

     ,2
34 40 18 20 16 37 36h h h h h h   

 

 

  

   


   



32 13 35 39 41 33 34 31 35 13 39 41 33 342
13 18 20

2
32 34 35 20 33 35 18 34 33 33 40 17 40 41 17 34

2
18 39 41 39 40 14 16 34 35 36 35 39 41 33 34

14 36 34 35 38 16 36 37 20

1
E = h h h h h h h h h h h h h h

h h h

h h h h h h h h h h h h h h h h

h h h h h h h h h h h h h h h

h h h h h h h h h h

    

      

     

   
  ,

2
35 18 34 40

2
13 37 34 35 38 32 37 38 20 35 18 34 40

h h h

h h h h h h h h h h h h h

  

    

 

 

     32 31 35 39 41 33 34 34 35 37 32 38 16 362
13 18 20

1
F = h h h h h h h h h h h h h h

h h h
     , 

 

  
( )

,2 2
11 2

2 1

2
h =

c

  


     

( )
,2 2

12 2
2 1

h =
c

  


     ,2

13 2
2 1

h =
c




     ,2 0

14 2
2 1

T
h =

c




     

*
,1 0 1

15
2

a T c L
h =

K
 

 

  
*

,
2

2
16

2

L
h =

K


     

*
,1

17
2 0

k
h =

K T
     ,4 5 6

18 2
3 0

k k k
h =

L k T

 
     ,4 5

19 2
3 0

k k
h =

L k T


     ,6

20 2
3 0

k
h =

L k T
 

 

  ,1
21

3 0

bc
h =

Lk T
     ,2

22
3 0

k
h =

k T
     

( )
,2 2

23
2 0

2
h =

T

  


     ,2
24

2 0

h =
T




     ,2
25

2 0

h =
T
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  ,2
26

2 0

h =
T




    ,4 5 6
27 3

1 2 0

k k k
h =

L c T

 


    ,4

28 3
1 2 0

k
h =

L c T
    ,5

29 3
1 2 0

k
h =

L c T
    ,6

30 3
1 2 0

k
h =

L c T
 

 

  ,2 2
31 11h = a h       ,2 2

32 13h = a h       ,2
33 15h = a h       ,2

34 18 21 22h = a h h h    
 

  ,2
35 20 21 22h = a h h h        ,36 12h = iah      ,37 14h = iah      ,38 16h = iah      ,39 17h = iah  

 
  ,40 19h = iah      .41h = ia  
 
 Thus Eqs (3.24)-(3.28) and constitutive relations in medium II may be expressed in the form 
 

        , ,
5

r yII m
2 1m m

m=1

u y = H M a e    (3.30) 

 

  
   , ,

5
r ym

2 2m m
m=1

T y = H M a e    (3.31) 

 

     , ,
5

r yII m
1 3m m

m=1

w y = H M a e    (3.32) 

 

     , ,
5

r yII m
2 4m m

m=1

w y = H M a e    (3.33) 

 

        ( ) , ,
5

r yII m
yy 5m m

m=1

y = H M a e     (3.34) 

 

       ( ) , ,
5

r yII m
yx 6m m

m=1

y = H M a e     (3.35) 

 

      ( ) , ,
5

r yII m
yy 7m m

m=1

q y = H M a e    (3.36) 

 

   ( ) ,
5

r yII m
yx 8m m

m=1

q y = H M a e    (3.37) 

 

where   
[ ( ) ]

[( ) ]

3
13 14 m 14 31 36 37 m

1m 2
14 36 13 37 m 32 37

h h r h h h h r
H =

h h h h r h h

 


 
  

 

  
 2

13 m 31 12 m 1m
2m

37

h r h iah r H
H =

h

 
, 
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[ ( )]

[ ( )]

2
40 m 33 40 17 41 2m 16 40 m 1m 38 40

3m 2
17 20 m 39 40 34 37

h r h h h h H h h r H h h
H =

h h r h h h h

   

 
, 

 

  
[ ]

[ ]
2m 40 3m m

4m 2
35 18 m

H h H r
H =

h h r




, 

 
  [ ]5m 24 m 23 1m 2mH iah r h H H   , 
 
  [ ]6m 25 1m m 26H iah H r h  , 
 
  7m 28 3m 27 m 4mH = iah H h r H  , 
 
  8m 30 m 3m 29 4mH = h r H iah H . 
  
4. Applications 
 
 In this section we determine the parameter nL ; ( , , , )n 1 2 3 4  and mM ; ( , , , , )m 1 2 3 4 5 . In the 
physical problem, we should suppress the positive exponential that are unbounded at infinity. Constants 

, ,1 2 3 4L ,L L L  and , , , ,1 2 3 4 5M M M M M  have to be selected such that the boundary condition at the surface 

y 0  takes the form 
 

  I II t iax
yy yy 1= P e    ;      I II

yx yx=  ;      I II
1 1u = u ;      I II

2 2u = u ;  

 

  yzm = 0 ;      * * ;1 2
1 2

T T
K = K

y y

 
 

      ;II
yyq 0       ;II

yxq 0       1 2T T  

 
where 1P  is the magnitude of mechanical force.  

 Using the expressions for I
yy , II

yy , I
yx , II

yx , I
1u , II

1u , I
2u , II

2u , yzm , 1T , 2T  II
yyq , II

yxq  from Eqs 

(3.18)-(3.23) and (3.30)-(3.37) in the above boundary conditions, we obtain the following non homogenous 
linear equations as 
 

     
4 5

4n n 5m m 1
n=1 m=1

R L H M = P   , 

 

     
4 5

5n n 6m m
n=1 m=1

R L H M = 0  , 

 

     
4 5

n m
n=1 m=1

L M = 0  , 

 

     
4 5

1n n 1m m
n=1 m=1

R L H M = 0  , 
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4

6n n
n=1

R L = 0 , 

 

     * *
4 5

1 n 2n n 2 m 2m m
n=1 m=1

K l R L K r H M = 0  , 

 

   
5

7m m
m=1

H M = 0 , 

 

   
5

8m m
m=1

H M = 0 , 

 

     
4 5

2n n 2m m
n=1 m=1

R L H M = 0  . 

 
 After solving the above system of nine equations, we get the values of constants 

, , ,1 2 3 4 1 2 3 4L ,L L L M ,M ,M ,M  and 5M  and hence obtain the components of normal displacement, 
temperature distribution, normal force stress and tangential couple stress for a thermoelastic micropolar solid 
with cubic symmetry at the interface of a thermoelastic solid with microtemperatures. 
 
5. Special cases 
 
1) Substituting ( ),1 1 1A 2 k     ,2 1A   ( ),3 1A k   ,4 1A   3B   , we obtain the expression for 

the micropolar thermoelastic solid (MTS). 
2) Neglecting the micropolarity effect, i.e., 3B j 0   and 3 4A A , the corrosponding expression are obtain 

in a thermoelastic solid with cubic symmetry (TCC). 
3) Taking, ( ),1 1 1A 2    ,2 1A   ,3 1A   ,4 1A    3B 0  in the expression obtained in the previous 

step, the expressions for normal displacement, temperature distribution and normal force stress are 
obtained for thermoelastic solid(TS). 

 
6. Numerical results and discussions 
 
 In order to illustrate the theoretical results obtained in the preceding section, we take the following 
values of parameters for the micropolar solid with cubic symmetry as [15] 
 

  . ,10 2
1A 19 6 10 N / m        . ,10 2

2A 5 6 10 N / m        . ,10 2
3A 11 7 10 N / m   

  . ,10 2
4A 11 7 10 N / m        . .9

3B 0 98 10 N   
 
 For micropolar thermoelastic solid , we take the following values of relevant parameters in case of 
Magnesium crystal like material as [15] 
 

  1 = . 10 29 4 10 N / m ,   1 = . 10 24 0 10 N / m ,  . ,3 3
1 1 74 10 kg / m     ,10 2k = 10 Nm  



18  P.Ailawalia, S.K.Sachdeva and D.Pathania 

 

  . ,9= 0 779 10 N         ,14 2j = 0.0000002 10 m       * . / / ,4
1c = 0 104 10 Nm Kg K  

 

  ,0T = 298K        * . ,2 1 1
1K = 1 7 10 Ns K         . .8 2

1 0 0268 10 N / m K    
 
 The values of relevant parameters for the thermoelastic solid with microtemperatures are [35] 
 

  2 = . 10 22 17 10 N / m ,     2 = . 10 23 278 10 N / m ,     . ,3 3
2 1 74 10 kg / m     

 

  . ,10b = 1 389 10 N      * . ,2 1 1
2K = 1 7 10 Ns K       . ,6 3 1

1 0a T = 1 8 10 Jm K   
 

  . .8 2 1
2 0 0268 10 Nm K    ,     ,10 1

1k = 2 10 Wm      . ,10 1
2k = 0 1 10 Wm  

 

  . ,10 1 1
3k = 0 4 10 Wm K       . ,10 3 1

4k = 0 3 10 Wm K       . ,10 3 1
5k = 0 5 10 Wm K   

 

  . ,10 3
6k = 0 7 10 Wm      . .10L 1 0 10 m   

 
 The computations are carried out for the value of non-dimensional time t = 0.2  in the range 

.0 x 10 0   and on the surface . .y = 1 0  The numerical values for normal displacement, temperature 
distribution, normal force stress and tangential coupled stress are shown in Figs 2-5 for mechanical force 
with magnitude  
 

        1P = 1.0 ,      0=    ,      .0 = 0 3  ,     .= 0 1       and      .a = 0 9       for 
 
(a) Micropolar thermoelastic solid with cubic symmetry (MTCC) by solid line with centered symbol . 
(b) Thermoelastic solid with cubic symmetry (TCC) by solid line with centered symbol ■ 
(c) Micropolar thermoelastic solid (MTS) by dashed line with centered symbol ▲. 
(d) Thermoelastic solid (MTS) by dashed line with centered symbol x . 
 
7. Discussions 
 
 The variations of normal displacement for MTCC, TCC and TS are similar in nature. The variation 
for MTS are opposite in nature as observed from Fig.2. It is also observed that the variations of normal 
displacement for MTCC and MTS are mirror images of each other. The variations of temperature 
distribution are quite similar in nature for the thermoelastic medium with cubic symmetry (MTCC and TCC) 
as well as for the thermoelastic medium without cubic symmetry (MTS and TS). These variations of 
temperature distributions are shown in Fig.3.   
       It can be observed form Fig.4 that the variations of normal force stress are opposite in nature for the 
micropolar thermoelastic medium (MTCC and MTS). These values of normal force stress are less in 
magnitude for TCC. The values for all medium coincides at .x 3 0  and .x 7 0 . The variations of tangential 
couple stress are exactly mirror images of each other as observed from Fig.5. 
 
8. Conclusion 
 
 Anisotropy and micropolarity show a significant effect on all the quantities. The variations of 
temperature distribution are similar in nature for the anisotropic medium(MTCC and TCC) and isotropic 
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medium(MTS and TS). Due to the anisotropic effect, the variations of normal force stress are opposite in 
nature for the micropolar thermoelastic medium (MTCC and MTS). The values of the quantities coincide for 
different media at .x 7 0 . 
 

 
Fig.2. Variation of normal displacement with horizontal distance. 

 

 
 

Fig.3. Variation of temperature distribution with horizontal distance. 
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Fig.4. Variation of normal force stress with horizontal distance. 
 

 
 

Fig.5. Variation of tangential couple stress with horizontal distance. 
 
Nomenclature 
 
Medium-I 

 
, , ,

,
1 2 3

4 3

A A A

A B
   material constants 

 *
1c   specific heat at constant strain 

 j   microinertia 

 *
1K   coefficient of thermal conductivity 
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 yzm   tangential couple stress 

 1T   thermodynamic temperature 

 Iu


  displacement vector 
 

1t
   coefficient of linear thermal expansion 

 1   density 

 I
ij   stress tensor 

 1   constitutive coefficient 

 
Medium-II 

 *
2K   coefficient of thermal conductivity  

 
, , , ,

, , ,
1 2 3 4

5 6 1 2

k k k k

k k a 
  constitutive coefficients

 

 II
ijq   first heat flux moment tensor

 
 2T   thermodynamic temperature 

 IIu   displacement vector 
 IIw   microtemperature vector 
 

2t
   coefficent of linear thermal expansion 

 ,2 2   Lame’s constants 
 2   density 
 II

ij   stress tensor
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